Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity.

نویسندگان

  • T Hirose
  • C Patterson
  • T Pourmotabbed
  • C L Mainardi
  • K A Hasty
چکیده

The family of matrix metalloproteinases is a family of closely related enzymes that play an important role in physiological and pathological processes of matrix degradation. The most distinctive characteristic of interstitial collagenases (fibroblast and neutrophil collagenases) is their ability to cleave interstitial collagens at a single peptide bond; however, the precise region of the enzyme responsible for this substrate specificity remains to be defined. To address this question, we generated truncated mutants of neutrophil collagenase with various deletions in the COOH-terminal domain and chimeric molecules between neutrophil collagenase and stromelysin and assayed the expressed enzymes against type I collagen and the general substrate, casein. Our data suggest that substrate specificity for interstitial collagen is determined by a 16-aa sequence in the COOH-terminal domain of neutrophil collagenase and is influenced by the integrity of a disulfide-defined loop at the COOH terminus for maximal activity. It was found that a relatively large region of 62-aa residues influenced the relative efficiency of collagenolytic activity. In addition to the region that conferred this specificity, a site at the COOH side of the presumptive zinc-binding locus was found to be necessary for general catalytic activity. Mutation of a critical aspartic residue at position 253 within this area resulted in complete loss of proteolytic activity, suggesting that Asp-253 might function as one of the ligands for divalent cations, which are essential for enzymatic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interstitial collagenase (matrix metalloproteinase-1) expresses serpinase activity.

Human endothelial cells treated with either interleukin-1 beta, tumor necrosis factor-alpha, or phorbol myristate acetate secreted a metalloproteinase that hydrolyzed and inactivated the two major serine proteinase inhibitors (Serpins) found in plasma, alpha 1-proteinase inhibitor and alpha 1-antichymotrypsin. Surprisingly, the responsible metalloproteinase was identified as human interstitial ...

متن کامل

Fibroblast and neutrophil collagenases cleave at two sites in the cartilage aggrecan interglobular domain.

The actions of recombinant human fibroblast collagenase (MMP1), purified polymorphonuclear leucocyte collagenase (MMP8) and their N-terminal catalytic domain fragments against cartilage aggrecan and an aggrecan G1-G2 fragment have been investigated in vitro. After activation with recombinant human stromelysin and typsin, both collagenases were able to degrade human and porcine aggrecans to a si...

متن کامل

The Role of Highly Conserved Tryptophan in the Sixth Conserved Region at Substrate Specificity of α- amylase

Early in this study, an α-Amylase from Bacillus megaterium WHO (BMW) was isolated from hot springs of Ramsar (North of Iran), and its gene was cloned in E.coli. Based on its conserved sequence regions and substrate specificity, it was classified as intermediary group enzymes with the specificity of oligo-1,6-glucosidase and neopullulanase subfamilies. In the sixth conserved re...

متن کامل

The Relationship between Cation-Induced Substrate Configuration and Enzymatic Activity of Phosphatidate Phosphohydrolase from Human Liver

The mechanism by which bi-and trivalent cations affect human liver phosphatidatephosphohydrolase (PAP) activity was investigated. Bivalent cations up to 1 mM increased PAP activity whereas at higher concentrations the activity of the enzyme decreased. The stimulatory concentration for trivalent cations such as Al3+ and Cr3+, however, was much lower being 2 m M and 1 m M, respectively. All catio...

متن کامل

O6: Pathophysiology of Anxiety Disorders

The most important risk factors for anxiety disorders include genes, early life stress, and current stress. These factors do not act independently but interact with each other throughout human development through examples such as epigenetic modifications and complex forms of learning. The neural substrate of pathological anxiety includes hyperactivity in the amygdala and other limbic brain regi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 90 7  شماره 

صفحات  -

تاریخ انتشار 1993